Меню

Конъюгация 3 х хромосом называется. Гомологичные хромосомы

Дом и участок

В ходе профазы мейоза I синаптонемный комплекс удерживает параллельно расположенные гомологичные хромосомы почти до момента их построения на экваторе клетки в метафазу I. Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2ч удрожжей до 2-3сутоку человека), втечение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК -- кроссинговер. Образуется синаптонемальный комплекс в результате конъюгации гомологичных хромосом.

Конъюгация или синапсис - попарный контакт параллельно расположенных и слабо конденсированных гомологичных хромосом. Конъюгация и формирование синаптонемального комплекса (СК) отсутствует у низшего гриба Aspergillusnidulans, дрожжей Sc. Pombe и у самцов некоторых мух, например Drosophilamelanogaster.

Рисунок 2. Строение синаптонемального комплекса

После премейотическойS-фазы две сестринские хроматиды хромосомы формируют общий осевой элемент. Осевые элементы гомологичных хромосом включаются в виде латеральных (боковых) элементов в СК. Формируется синаптонемный комплекс (СК) - из белковых осей двух гомологичных хромосом и центрального элемента. Ширина боковых элементов составляет 30-60 нм, ширина центрального элемента - 60-120 нм. Боковые элементы состоят из мейоз-специфичных белков. Между ними формируются белковые перемычки. Первым специфическим белком СК (появляется еще в интерфазу) является белок REC8. ДНК гомологичных хромосом в виде петель отходят от боковых (латеральных) элементов СК. Большая часть ДНК локализована вне СК, лишь 0,5% геномной ДНК входит в СК, прочно связываясь с белками. Небольшое количество ДНК проходит через центральное пространство СК. ДНК СК состоит их уникальных и умеренно повторяющихся последовательностей, которые могут взаимодействовать с белками СК и белками, участвующими в рекомбинации и сегрегации гомологичных хромосом.

На 90% СК состоит из белков. Выделяют 5-10 мажорных белков с молекулярной массой от 26 до 190 кДа. У млекопитающих хорошо изучены 3 белка СК - SCP1, SCP2, CSP3 (synaptonemalcomplexprotein). Белки СК дрожжей назвали Zip1, Zip2, Red1, Hop1.

Белок SCP1 - основной белок поперечных филаментов СК. С-концы этого белка «заякорены» на латеральных элементах СК и взаимодействуют здесь с ДНК, N-концы достигают центрального пространства СК и соединяют противоположные латеральные элементы СК с помощью белок-белковых взаимодействий.

У дрожжей белок Zip1 является основным белком поперечных филаментов СК. Белок Zip2 действует как инициатор синапсиса, образуя центры полимеризации белка Zip1.

Белки SCP2, SCP3- белки латеральных элементов СК. Совместно локализуются вдоль осевых элементов хромосом и латеральных элементов СК. После диплотены концентрируются в центромерах хромосом, хотя небольшое их количество обнаруживается вдоль плеч хромосом. Т.о. эти белки участвуют в сцеплении - когезии сестринских хроматид. К белкам когезинам относятся и митоз-специфические белки - Smc1p, Smc3p, Scc1p, Scc3p.

У дрожжей белок Red1 образует центры формирования осевых элементов. Он взаимодействует с белком Hop1, который тоже является компонентом латеральных элементов СК у дрожжей.

Основа протяженных латеральных элементов-- комплекс из четырех белков когезинов. Накануне мейоза в хромосомах появляется специфичный белок когезин Rec8, который заменяет соматический когезин Rad21. Затем к нему присоединяются три других белка-когезина, присутствующие и в соматических клетках, новместо соматического когезина SMC1 появляется специфический для мейоза белок SMC1b (его N-конец на 50% отличается от N-конца соматического белка SMC1). Этот когезиновый комплекс располагается внутри хромосомы между двумя сестринскими хроматидами, удерживая их вместе. Скомплексом когезинов связываются мейоз-специфичные белки, которые становятся мажорными белками хромосомных осей и превращают их в латеральные элементы синаптонемного комплекса.

Регуляция сборки белков в СК происходит с помощью фосфорилирования-дефосфорилирования. Многие белки СК содержат по несколько сайтов фосфорилирования протеин-киназой р34.

В составе СК выделяют рекомбинационные узелки: ранние - на стадии лептотены и зиготены, локализуются в боковых элементах СК на участках инициации рекомбинации. В состав ранних рекомбинационных узелков входят ферменты, которые необходимы для инициации двунитевых разрывов в ДНК и формирования однонитевых концов. Например белок Spo11p (топоизомераза) - основная мейоз-специфичная эндонуклеаза, которая осуществляет двойные разрывы в ДНК. Поздние рекомбинационные узелки обнаружены на стадии пахитены, локализуются в центральном элементе СК. Обнаружена связь между числом и распределением поздних рекомбинационных узелков и числом и распределением хиазм в биваленте. Таким образом, поздние узелки - мультиферментные комплексы, катализирующие кроссинговер.

Инициация формирования СК у дрожжей и растений происходит в нескольких точках по всей длине бивалента (6 сайтов инициации у кукурузы, до 36 у лилии); у животных формирование СК начинается с теломер и распространяется по типу застежки «молнии». Завершение формирования СК - пахитена, его разрушение - диплотена.

Функции СК: - удерживает гомологичные хромосомы строго напротив друг друга;

препятствует слипанию гомологичных хромосом - обратимая конъюгация;

обязательная предпосылка для кроссинговера.

У мутантов с отсутствием конъюгации отсутствует и кроссинговер.

Генетический контроль конъюгации

Рожь. 3 группы рецессивных мутаций, нарушающих формирование СК.

мутации сильногоасинапсиса. Мутации блокируют конъюгацию хромосом при переходе от лептотены к зиготене.

Мутации слабогоасинапсиса или десинапсиса - самая многочисленная группа. У ржи данные мутации нарушают конъюгацию в 1-3 парах хромосом из 7. Наблюдаются как диваленты, так и униваленты; подавление формирования СК на концах хромосом; внутренние участки асинапсиса или десинапсиса. Снижается частота появления хиазм, частота кроссинговера.

Мутации индискриминантного синапсиса - одновременное присутствие гомологичного и негомологичного синапсиса, что приводит к появлению мультивалентов и унивалентов. Латеральные элементы СК могут сформировать складки из-за синапсиса «на себя».

Синапсис Х и Y хромосом

У слепушонки (род полевок) Х и Y хромосомы формируют короткий СК в ранней пахитене (конъюгируют короткими плечами), в диплотене происходит десинапсис и половые хромосомы становятся унивалентами.

Для ХY-бивалента большинства млекопитающих характерна концевая конъюгация половых хромосом (длинные плечи Х и Y хромосом), отсутствие которой нарушает расхождение половых хромосом в мейозе. Конъюгируют Х и Y хромосомы за счет гомологичного участка, содержащего такие гены как ген общей цветовой слепоты, пигментной ксеродермы, геморрагического диатеза.

ХY-бивалент выключается из метаболизма клетки путем образования полового пузырька, внутри которого неконъюгированные участки хромосом находятся в конденсированном состоянии.

Х хромосома может ассоциироваться с аберрантными хромосомами (транслоцированными, инверсионными). Это защитный механизм - если Х хромосома тесно ассоциирована с аберрантной, то вокруг полового бивалента не образуется половой пузырек. Это служит сигналом для остановки мейоза на стадии пахитены. Это предотвращает попадание поврежденных хромосом в половые клетки.

ДНК в составе хромосом может быть уложена с разной плотностью, в зависимости от их функциональной активности и стадии клеточного цикла. В связи с этим различают два состояния хромосом - интерфазные и митотические. Митотические хромосомы образуются в клетке во время митоза. Это неработающие хромосомы, и молекулы ДНК в них уложены чрезвычайно плотно. Достаточно сказать, что общая длина метафазных хромосом примерно в 104 раз меньше, чем длина всей ДНК, содержащейся в ядре. Благодаря такой компактности митотических хромосом обеспечивается равномерное распределение генетического материала между дочерними клетками при митозе.

Билет 33 особые или гиганские хромосомы

Полите́нные хромосо́мы - гигантские интерфазные хромосомы, возникающие в некоторых типах специализированных клеток в результате двух процессов: во-первых, многократной репликации ДНК, не сопровождаемой делением клетки, во-вторых, боковой конъюгации хроматид. Клетки, в которых есть политенные хромосомы, теряют способность к делению, они являются дифференцированными и активно секретирующими, то есть, политенизация хромосом является способом увеличения числа копий генов для синтеза какого-либо продукта. Характерная форма и размеры политенных хромосом достигаются вследствие их максимальной деспирализации и многократного воспроизведения хромосом без их последующего расхождения, то есть они образуются как результат эндомитоза. Политенные хромосомы имеют характерную поперечную исчерченность, обусловленную наличием участков более плотной спирализации хромонем - хромомер. В тёмных участках (то есть хромомерах) располагается спирализованный неактивный хроматин, в то время как светлые полосы указывают на участок с повышенной транскрипционной активностью. Чёткое различение тёмных дисков и светлых междисковых участков объясняется нерасхождением дочерних хромонем. По этой причине все особенности отдельной хромонемы, в том числе хромомерный рисунок, становятся выраженными более контрастно. По сути, политенные хромосомы представляют собой пару гигантских гомологичных хромосом, находящихся в состоянии идеально точной соматической конъюгации. При этом диски и междисковые участки гомологов расположены строго параллельно и тесно сближены. Такая конъюгация не характерна для подавляющего большинства соматических клеток

В политенных хромосомах процесс транскрипции сопровождается формированием т. н. пуфов - характерных вздутий определённых дисков, образующихся в результате локальной декомпактизации в них ДНК. Крупные пуфы называются кольцами Бальбиани.



Пуфирование характерно для стадии личинки. Образование и исчезновение пуфов регулируется внутренней средой организма в соответствии со стадией развития.

Политенные хромосомы содержат большое число копий генов, что многократно усиливает генную экспрессию. Это, в свою очередь, увеличивает производство необходимых белков. Например, в клетках слюнных желёз личинок D. melanogaster политенизация хромосом необходима для образования большого количества клейкого вещества до окукливания

Билет 35 ультраструктура митохондрий, их функция, происхождение.

митохондрии независимо от их величины или формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами.

Наружная мембрана Наружная мембрана митохондрии имеет толщину около 7 нм, не образует впячиваний и складок, и замкнута сама на себя.. Основная функция - отграничение митохондрии от цитоплазмы. Наружная мембрана митохондрии состоит из липидов с вкраплениями белков. Особую роль играет порин - каналообразующий белок: он формирует в наружной мембране отверстия диаметром 2-3 нм, через которые могут проникать небольшие молекулы и ионы весом до 5 кДа. Крупные молекулы могут пересекать наружную мембрану только посредством активного транспорта через транспортные белки митохондриальных мембран. Наружная мембрана митохондрии может взаимодействовать с мембраной эндоплазматического ретикулума; это играет важную роль в транспортировке липидов и ионов кальция.

Межмембранное пространство

Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Его толщина - 10-20 нм. Так как наружная мембрана митохондрии проницаема для небольших молекул и ионов, их концентрация в периплазматическом пространстве мало отличается от таковой в цитоплазме. Напротив, крупным белкам для транспорта из цитоплазмы в периплазматическое пространство необходимо иметь специфические сигнальные пептиды; поэтому белковые компоненты периплазматического пространства и цитоплазмы различны. Одним из белков, содержащихся не только во внутренней мембране, но и в периплазматическом пространстве, является цитохром c



Внутренняя мембрана

Внутренняя мембрана состоит в основном из белковых комплексов и образует многочисленные гребневидные складки - кристы, Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина - особого фосфолипида, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов. Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

Одной из основных функций митохондрий является синтез АТФ - универсальной формы химической энергии в любой живой клетке.

В соответствии с теорией симбиогенеза , митохондрии появились в результате захвата примитивными клетками (прокариотами) бактерий. Клетки, которые не могли сами использовать кислород для генерации энергии, имели серьёзные ограничения в возможностях развития; бактерии же (прогеноты) могли это делать. В процессе развития таких отношений прогеноты передали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру теперь уже эукариот.

  • Партеногенез.
  • Общая характеристика половых клеток, или гамет.
  • 7. Закон расщепления. Доминантность и рецессивность.
  • 8. Закон чистоты гамет. Анализирующее скрещивание.
  • 3 Части семян жёлтых морщинистых, 3 части семян – зелёных гладких и I часть семян – зелёных морщинистых.
  • Контролируемых генами х- и у-хромосом человека.
  • Линейное расположение генов в хромосомах. Генетические и цитологи­ческие карты хромосом.
  • Неаллельных генов в детерминации признаков.
  • Множественные аллели. Наследование групп крови по системе аво.
  • Комплементарность. Эффект положения.
  • Полимерия. Полигенное наследование как механизм наследования коли­чественных признаков.
  • Количественная и качественная специфика проявления генов в призна­ках: пенетрантность, экспрессивность, поле действия гена, плейотро­пия, генокопии.
  • Перенос биологической информации на белок (трансляция). Структура, виды и роль рнк.
  • Гипотеза «один ген – один фермент», ее современная трактовка..
  • 5. Регуляция экспрессии генов у прокариот и эукариот.
  • Генные мутации. Понятие о генных болезнях.
  • Антимутационные барьеры организма.
  • Репарация генетического материала. .
  • Генные болезни, механизмы их развития, наследования, частота воз­никновения.
  • 1. Структурные мутации хромосом (хромосомные аберрации).
  • Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.
  • Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
  • Радиационные мутации. Генетическая опасность загрязнения окружающей среды.
  • Анеуплоидия.
  • 4. Медико-генетическое консультирование.
  • 5. Пренатальная диагностика:
  • 2 Стадия – активации гамет, наступает после их контакта. Активация сперматозоида называется акросомная реакция. Активация яйцеклетки – кортикальная реакция.
  • Общая характеристика гаструляции. Особенности гаструляции у амфибий и птиц. Гаструляция у высших (плацентарных) млекопитающих.
  • Роль наследственности и среды в эмбриональном развитии.
  • Морфогенез (формообразование), его основные процессы:
  • 5. Интеграция в развитии, целостность онтогенеза. Роль гормонов в ко­ординации процессов развития.
  • Биологические аспекты старения и смерти.
  • Генетический контроль роста. Роль нервной и эндокринной системы в регуляции процессов роста.
  • Старение как продолжение развития. Программные теории старения.
  • Процессы, ведущие к старению на разных уровнях организации.
  • 3. Репаративная регенерация как процесс вторичного развития, ее биоло­гическая сущность.
  • 4. Характерные признаки репаративной регенерации, атипичная регенерация.
  • 5. Масштаб регенерации, его границы у разных видов животных.
  • 6. Способы репаративной регенерации: эпиморфоз и морфоллаксис.
  • 7. Регенерация органов и тканей у высокоорганизованных животных, чело­века.
  • 8. Регенерационная гипертрофия: молекулярные, клеточные и системные механизмы.
  • 9. Эволюция регенерационной способности.
  • 13. Регенерация патологически измененных органов.
  • Организм как открытая саморегулирующая система. Общие (кибернети­ческие) закономерности гомеостаза живых систем.
  • 4. Клеточные механизмы гомеостаза.
  • 5. Системные механизмы гомеостаза:
  • 1. Популяционная структура человечества. Демографические и генетичес­кие характеристики популяции людей. Демы, изоляты.
  • 2. Дрейф генов и особенности генофондов изолятов.
  • 3. Влияние мутационного процесса, миграции, изоляции, популяционных волн на генетическую конституцию людей.
  • 4. Специфика действия естественного отбора в человеческих популяциях. Отбор против гетерозигот и гомозигот.
  • 5. Отбор и контротбор..
  • 6. Генетический полиморфизм человечества.
  • И кро­веносной систем хордовых.
  • Главные эволюционные характеристики органов и функций:
  • 2. Главные принципы эволюции органов и функций:
  • Филогенез органов дыхания хордовых
  • 3. Филогенез органов кровообращения у хордовых:
  • И выделительной системы хордовых.
  • Филогенез пищеварительной системы хордовых:
  • 2. Филогенез выделительной системы хордовых:
  • Определение и структура экологии.
  • Среда как экологическое понятие. Факторы среды.. Понятие экологической валентности.
  • Понятие экосистемы, биогеоценоза, антропобиогеоценоза.
  • Изменение биоценозов во времени. Экологические сукцессии.
  • Биосфера как естественноисторическая система. Современные концеп­ции биосферы. .
  • Живое вещество: количественная и качественная характеристика. Роль в природе планеты.
  • Функции биосферы в развитии природы Земли.
  • Круговорот химических элементов как главная функция биосферы.
  • Эволюция биосферы.
  • Возрастающее влияние человека на биосферу. Экологические последс­твия.
  • Возникновение и развитие ноосферы.
  • Предмет и задачи экологии человека.
  • Общая характеристика среды обитания людей.
  • 3. Понятие адаптивного ти­па.
  • 4. Человек как творческий экологический фактор. Антропоген­ные экосистемы.
  • 12 Видов европейских бабочек, а некоторые виды других насекомых перешли к питанию лепестками ее цветков и семенами будлеи.
  • 5. Адаптация человека к среде обитания: биологические и социальные ас­пекты.
  • 6. Проблемы охраны окружающей среды и рационального природопользования.
  • 8. Цитоплазма: основное вещество, цитоскелет, органеллы.

    Основное вещество цитоплазмы представлено гиалоплазмой. Это коллоидный раствор неорганических и органических веществ, особенно много в гиалоплазме белков.

    Функции гиалоплазмы:

      соединение компонентов цитоплазмы в единое целое

      участие в транспорте веществ

      в гиалоплазме протекает гликолиз

      в гиалоплазме накапливается АТФ и включения.

    Цитоскелет клетки представлен микротрубочками и микрофиламентами.

    Каждая микротрубочка представляет собой полый цилиндр диаметром 20-30нм, образованный белком тубулином. Микротрубочи играют роль цитоскелета, т.к. пронизывают всю цитоплазму клетки. Кроме того, микротрубочки участвуют в создании клеточного центра и в транспорте веществ внутри клетки.

    Микрофиламенты – это белковые нити толщиной около 4нм. Большинство из них образовано молекулами актинов, которых выявлено около 10 видов. Они могут группироваться в пучки, образующие опорные структуры цитоскелета.

    Микротрубочки – трубчатые образования белковой природы различной длины с внешним диаметром 24 нм. Микротрубочки встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей.

    Органеллы животной клетки: ЭПС, аппарат Гольджи, лизосомы, митохондрии, пластиды, рибосомы, клеточный центр.

    Органоиды клетки делятся на органоиды общего назначения и спе­циального назначения.

    Органоиды спе­циального назначения встречаются только в специализированных клет­ках и обеспечивают выполнение этими клетками специфических функций. К ним относятся миофибриллы мышечной клетки, ресничный эпителий дыхательных путей, ворсинки тонкого кишечника, жгутик сперматозоида.

    Органоиды общего назначения присущи всем клеткам. К ним относятся эндо­плазматическая сеть, лизосомы, митохондрии, рибосомы, комплекс Гольджи, клеточный центр, микротрубочки и микрофиламенты, а также пластиды (последние только у растений).

    Эндоплазматическая сеть представлена сетью каналов и уплощённых цистерн, ограни­ченных одинарной мембраной. Она разветвляется по всему объёму ци­топлазмы, что позволяет ей выполнять следующие функции:

      механическая – обеспечение постоянной формы клетки;

      увеличение площади внутренней поверхности клетки;

      транспортная – перенос веществ между органоидами клетки, органои­дами и ядром, клеткой и внешней средой;

    ЭПС подразделяется на два типа: шероховатую и гладкую. Шерохо­ватая имеет на наружной поверхности многочисленные рибосомы, на которых синтезируется белок. Гладкая сеть состоит из каналов и цистерн меньшего сечения, чем в шероховатой ЭПС. Она выполняет следующие функции:

      синтез липидов, входящих в состав мембран;

      обезвреживание вредных продуктов метаболизма;

      синтез предшественников стероидных гормонов;

    Лизосома . Это пузырёк диаметром 0,2 - 0,5 мкм, покрытый однослойной мемб­раной. Эта мембрана предохраняет структуры и вещества клетки от разрушающих действий ферментов лизосом. При нарушений её целостнос­ти ферменты выходят в цитоплазму клетки, и происходит автолиз – са­мопереваривание клетки. Ферменты лизосом способны расщеплять бел­ки, нуклеиновые кислоты, полисахариды и липиды.

    Функции лизосом:

    1. осуществляют внутриклеточное пищеварение; лизосомы – миниа­тюрная пищеварительная система клетки;

    2. удаляют отжившие органоиды клетки или личиночные органы. Так, хвост у головастика лягушек рассасывается под действием фермента лизосом – катепсина;

    3. превращают вредные для клетки вещества в перевариваемые про­дукты;

    4. участвуют в защите клетки то бактерий и вирусов (вирусы замуровываются в лизосоме).

    Образуются лизосомы в комплексе Гольджи: сюда поступают синте­зированные на рибосомах ферменты, здесь они окружаются мембраной и вы­водятся в цитоплазму. Это первичные (неактивные) лизосомы. Вторичные (активные) лизосомы образуются из первичных. Они подразделяются на фаголизосомы и аутолизосомы . Фаголизосомы переваривают материал, поступающий в клетку извне. Аутолизосомы разрушают собственные, изношенные структуры клетки. Вторичные лизосомы, в которых процесс переваривания завершён, называются остаточными тельцами . В них отсутствуют ферменты, и содержится непереваренный материал.

    Митохондрия (1-5 мкм) – двумембранный органоид, выполняющий функцию внутриклеточной энергетической станции. Это округлые образования, ограниченные двумя мембранами – наруж­ной и внутренней. Наружная мембрана гладкая, она регулирует как пос­тупление веществ в митохондрию, так и выведение их. Внутренняя мембрана образует складки – кристы, обращённые внутрь митохондрии. Внутри митохондрии находится так называемый матрикс, содержащий различные ферменты, ионы Са 2+ и Мg 2+ , а также ДНК, т-РНК, и-РНК и рибосомы (причём ДНК и рибосомы у митохондрий похожи на таковые бактерий).

    Благодаря наличию собственной ДНК (1 молекула кольцевой формы), митохондрии могут размножаться не­зависимо от деления клетки. Происходит это путём перешнуровки исходной митохонд­рии. Предварительно у них удваивается количество ДНК. Благодаря содержанию т-РНК, и-РНК и рибосом, митохондрии они могут синтезировать собственный белок.

    Кроме того, митохондрии играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность).

    На кристах митохондрии происходят окислительно-восстановительные процессы, сопровождающиеся выделени­ем энергии. Она используется на образование фосфатных связей в АТФ. Накопление АТФ делает митохондрии своеобразными аккумуляторами энергии клетки, которая расходуется на процессы жизнедеятельности клетки по мере надобности. Из-за интенсивной работы митохондрии имеют малую продолжительность жизни, например митохондрии клеток печени живут всего 10 дней.

    Аппарат Гольджи представляет собой систему диктиосом числом от нескольких десятков до нескольких сотен и даже тысяч на клетку. Каждая диктиосома образована стопкой из 3-12 крупных цистерн, похожих на блюдца. От цистерн отходят во все стороны трубочки и пузырьки, имеющие мембранное строение. Трубочки соединяют отдельные цис­терны соседних стопок, так образуется их единая сеть. Пузырьки участвуют в образовании первичных лизосом. В разных типах клеток аппарат Гольджи занимает строго определённое положение, вблизи ядра.

    Функции аппарата Гольджи разнообразны:

    1. образование первичных лизосом, которые поступают затем в цитоплазму;

    2. упаковка белков, поступающих из ЭПС, для последующего экспорта из клетки;

    3. синтез структурных компонентов клетки, например, коллагеновых нитей;

    4. синтез жиров и полисахаридов, входящих в состав мембран клетки;

    Рибосома (0,02-0,03 мкм) – не мембранный органоид, осуществляющий биосинтез белка. Рибосома состоит из двух неравных субъединиц – большой и малой. Обе субъединицы образуются в ядрышках, но объединяются они в рибосому только в момент присоединения к и-РНК. Этот процесс происходит с помощью ионов Мg 2+ .

    В каждой клетке содержится от десятков тысяч до миллионов рибосом. Часть их находится в свободном состоянии, но большинство рибосом прикреплено к мембранам ЭПС. Первые синтезируют белки, исполь­зуемые для нужд клетки, вторые синтезируют белки "на экспорт". Они по кана­лам ЭПС поступают в комплекс Гольджи, пакуются в мембраны, а затем выводятся из клетки. Скорость работы рибосом поразительна – одна белковая молекула средних размеров синтезируется за одну минуту. Это позволяет непре­рывно обновлять белки организма, изнашивающиеся в процессе его жизнедеятельности. Так, белки печени человека обновляются за 7 су­ток.

    Клеточный центр – не мембранный органоид, в котором из белка тубулина образуются микротрубочки. Клеточный центр состоит из двух центриолей, расположенных перпендикулярно друг к другу. Каждая центриоль – это цистерна, состоящая из 9 строенных микротрубочек. Микротрубочки соединены между собой системой связок, а снаружи одеты белковым чехлом. Перед делением клетки центриоли удваивают­ся. Во время митоза центриоли определяют местоположения полюсов веретена деления. Причём положение центриолей в делящейся клетке определяет центры новых клеток. Здесь будет располагаться ядро, т.к. клеточный центр всегда располагается вблизи ядра.

    9. Включения

    Это непостоянный компонент цитоплазмы. Наличие их и количество зависит от интенсивности обмена веществ и состояния ор­ганизма. Они делятся на три группы:

    1. запасной питательный материал (гликоген, жир, крахмал);

    2. вещества, подлежащие выведению из клетки (ферменты, гормоны);

    3. балластные вещества (пигменты, соли щавелевой кислоты). Они более характерны для растительных клеток, т.к. у растений нет сис­тем, аналогичной выделительной системе животных.

    ЛЕКЦИЯ 2 Ядро клетки. Наследственный аппарат клеток человека.

    1. Строение и функции ядра.

    Ядро находится либо в центре клетки, либо смещено на периферию. Ядро эукариотической клетки имеет собственную мембрану, отграничи­вающую его от цитоплазмы. Мембрана имеет 2 слоя, между ними находится околоядерное пространство, связанное с ЭПС.

    Ядерная мембрана имеет отверстия – поры. Но они не сквозные, а заполнены специальными белками. Через поры из ядра в цитоплазму выходят молекулы РНК, а навстречу им в ядро передвигаются белки. Сама же мембрана ядерной оболочки обеспечивает прохождение низко­молекулярных соединений в обоих направлениях. Внутренняя мембрана ядерной оболочки имеет белковую подстилку, к которой крепятся хромосомы. Это обеспечивает их упорядоченное расположение.

    Функции ядерной оболочки: защитная, регуляция транспорта веществ и органелл

    Под мембраной находится ядерный сок – кариоплазма . В ней находятся одно или несколько ядрышек, значительное количество РНК и ДНК, различ­ные белки, в т.ч. большинство ферментов ядра, а также свободные нуклеотиды, аминокислоты, промежуточ­ные продукты метаболизма. Кариоплазма осуществляет взаимосвязь всех ядерных структур.

    Ядрышки – это округлые, сильно уплотнённые, не ограниченные мембраной участки клеточного ядра диамет­ром 1-2 мкм и больше. Форма, размеры и количество ядрышек зависят от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность. В ядре их может содержаться от 1 до 10, а в ядрах дрожжей они отсутствуют.

    Во время деления ядра ядрышки разрушаются. В конце деления они вновь формируются вокруг определённых участков хромосомы (ядрышковых организаторов), расположенных в области вторичной перетяжки хромосомы. Функция ядрышек состоит в синтезе

    р-РНК и сборки субъединиц рибосом из белка и р-РНК.

    В два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом - образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

    С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

    В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

    Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

    Фазы мейоза

    Мейоз состоит из двух последовательных делений с короткой интерфазой между ними.

    • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
    • Фаза лептотены или лептонемы - конденсация ДНК с образованием хромосом в виде тонких нитей.
    • Зиготена или зигонема - коньюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.
    • Пахитена или пахинема - кроссинговер (перекрест) обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
    • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.
    • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.
    • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
    • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
    • Телофаза I

    Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

    • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
    • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
    • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
    • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

    Гомологичными хромосомами принято называть пару хромосом, которые имеют примерно идентичную длину, одинаковое положение центромеры и равную картину при окрашивании. Их гены в соответствующих локусах являются аллельными генами, то есть кодируются в одни и те же белки или РНК. В случае двуполого размножения одной гомологичной хромосомой будет наследоваться организм от матери, а другой - от отца.

    Как называется обмен участками гомологичных хромосом

    Кроссинговер

    Конъюгация гомологичных хромосом

    При делении диплоидной клетки путем мейоза образуются гаплоидные гаметы. У этих гамет имеется по одной 1 хромосоме каждой гомологичной пары (материнского или отсовского происхождения). И поэтому к аппарату клеточного деления тут имеется следующее требование: гомологи должны "распознавать" друг друга и перед принятием положения на экваторе веретена, они должны соединяться в пары. Этот процесс называется спариванием или конъюгацией. Он возможен лишь в мейозе.